--- /dev/null
+/*
+ Copyright (C) 2018 Paul Brossier <piem@aubio.org>
+
+ This file is part of aubio.
+
+ aubio is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ aubio is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with aubio. If not, see <http://www.gnu.org/licenses/>.
+
+*/
+
+
+#include "aubio_priv.h"
+#include "fmat.h"
+#include "tensor.h"
+#include "conv2d.h"
+
+typedef enum
+{
+ PAD_SAME = 0, // TODO
+ PAD_VALID = 1,
+ //PAD_CAUSAL = 2, // TODO (1d only, for dilated convolution)
+} aubio_conv2d_padding_type;
+
+struct _aubio_conv2d_t {
+ // define internals here
+ uint_t n_filters;
+ uint_t kernel_shape[2]; // kernel sizes
+ uint_t stride_shape[2]; // stride sizes
+
+ aubio_conv2d_padding_type padding_mode;
+
+ // these will be set after calling get_output_shape
+ aubio_tensor_t *kernel;
+ fvec_t *bias;
+ uint_t output_shape[3]; // shape of output
+ uint_t padding_start[2]; // {top, left} padding
+};
+
+static void aubio_conv2d_debug(aubio_conv2d_t *c, aubio_tensor_t *input_tensor);
+
+aubio_conv2d_t *new_aubio_conv2d(uint_t n_filters, uint_t *kernel_shape)
+{
+ aubio_conv2d_t *c = AUBIO_NEW(aubio_conv2d_t);
+
+ // validate input parameters
+ AUBIO_GOTO_FAILURE((sint_t)n_filters >= 1);
+ AUBIO_GOTO_FAILURE((sint_t)kernel_shape[0] >= 1);
+ AUBIO_GOTO_FAILURE((sint_t)kernel_shape[1] >= 1);
+
+ // set internal variables
+ c->n_filters = n_filters;
+ c->kernel_shape[0] = kernel_shape[0];
+ c->kernel_shape[1] = kernel_shape[1];
+
+ // default to padding_mode="valid"
+ c->padding_mode = PAD_VALID;
+ // set default stride_shape to {1, 1}
+ aubio_conv2d_set_stride(c, 1, 1);
+
+ return c;
+
+failure:
+ del_aubio_conv2d(c);
+ return NULL;
+}
+
+void del_aubio_conv2d(aubio_conv2d_t *c)
+{
+ AUBIO_ASSERT(c);
+ // destroy internals here
+ if (c->kernel) {
+ del_aubio_tensor(c->kernel);
+ }
+ if (c->bias)
+ del_fvec(c->bias);
+ AUBIO_FREE(c);
+}
+
+
+uint_t aubio_conv2d_set_stride(aubio_conv2d_t *c,
+ uint_t stride1, uint_t stride2)
+{
+ if ((sint_t)stride1 < 1) return AUBIO_FAIL;
+ if ((sint_t)stride2 < 1) return AUBIO_FAIL;
+ c->stride_shape[0] = stride1;
+ c->stride_shape[1] = stride2;
+ return AUBIO_OK;
+}
+
+uint_t *aubio_conv2d_get_stride(aubio_conv2d_t *c)
+{
+ return c->stride_shape;
+}
+
+uint_t aubio_conv2d_get_output_shape(aubio_conv2d_t *c,
+ aubio_tensor_t *input_tensor,
+ uint_t *shape)
+{
+ uint_t output_shape[3] = {0, 0, c->n_filters};
+ uint_t padding_start[2] = {0, 0};
+
+ // check input parameters
+ AUBIO_ASSERT(input_tensor);
+ AUBIO_ASSERT(shape);
+
+ // reset output array
+ shape[0] = 0;
+ shape[1] = 0;
+ shape[2] = 0;
+
+ switch (c->padding_mode) {
+ case PAD_SAME:
+ // compute output shape
+ output_shape[0] = (uint_t)CEIL(input_tensor->shape[0]
+ / (smpl_t)c->stride_shape[0]);
+ output_shape[1] = (uint_t)CEIL(input_tensor->shape[1]
+ / (smpl_t)c->stride_shape[1]);
+
+ uint_t padding_shape[2]; // total amount of padding
+ padding_shape[0] = (output_shape[0] - 1) * c->stride_shape[0]
+ + c->kernel_shape[0] - input_tensor->shape[0];
+ padding_shape[1] = (output_shape[1] - 1) * c->stride_shape[1]
+ + c->kernel_shape[1] - input_tensor->shape[1];
+
+ padding_start[0] = FLOOR(padding_shape[0] / 2);
+ padding_start[1] = FLOOR(padding_shape[1] / 2);
+
+ break;
+ case PAD_VALID:
+ output_shape[0] = (input_tensor->shape[0] - c->kernel_shape[0] + 1)
+ / c->stride_shape[0];
+ output_shape[1] = (input_tensor->shape[1] - c->kernel_shape[1] + 1)
+ / c->stride_shape[1];
+
+ padding_start[0] = 0;
+ padding_start[1] = 0;
+ break;
+ //case PAD_CAUSAL:
+ // // TODO
+ // return AUBIO_FAIL;
+ default:
+ return AUBIO_FAIL;
+ }
+
+ uint_t kernel_shape[4];
+ kernel_shape[0] = c->kernel_shape[0];
+ kernel_shape[1] = c->kernel_shape[1];
+ kernel_shape[2] = input_tensor->shape[2];
+ kernel_shape[3] = c->n_filters;
+
+ if (c->kernel) del_aubio_tensor(c->kernel);
+ if (c->bias) del_fvec(c->bias);
+
+ c->kernel = new_aubio_tensor(4, kernel_shape);
+ if (!c->kernel) return AUBIO_FAIL;
+ c->bias = new_fvec(c->n_filters);
+
+ // set internals upon success
+ c->output_shape[0] = output_shape[0];
+ c->output_shape[1] = output_shape[1];
+ c->output_shape[2] = output_shape[2];
+
+ c->padding_start[0] = padding_start[0];
+ c->padding_start[1] = padding_start[1];
+
+ // set output
+ shape[0] = output_shape[0];
+ shape[1] = output_shape[1];
+ shape[2] = output_shape[2];
+
+ aubio_conv2d_debug(c, input_tensor);
+
+ return AUBIO_OK;
+}
+
+void aubio_conv2d_debug(aubio_conv2d_t *c, aubio_tensor_t *input_tensor)
+{
+ // print some info
+ AUBIO_ASSERT(c);
+ uint_t n_params = (c->kernel->shape[0] * c->kernel->shape[2] + 1)
+ * c->kernel->shape[1] * c->kernel->shape[3];
+
+ AUBIO_DBG("conv2d: input %s ยค conv2d %s"
+ " : (%d, %d, %d)"
+ " (%d params, stride (%d, %d), pad_start [%d, %d])\n",
+ aubio_tensor_get_shape_string(input_tensor),
+ aubio_tensor_get_shape_string(c->kernel),
+ c->output_shape[0], c->output_shape[1], c->output_shape[2],
+ n_params,
+ c->stride_shape[0], c->stride_shape[1],
+ -c->padding_start[0], -c->padding_start[1]);
+}
+
+uint_t aubio_conv2d_check_output_shape(aubio_conv2d_t *c,
+ aubio_tensor_t *input_tensor,
+ aubio_tensor_t *activations)
+{
+ // fetch output_shape if it hasn't been done before
+ if (c->output_shape[0] == 0 ||
+ c->output_shape[1] == 0 ||
+ c->output_shape[2] == 0) {
+ if (!aubio_conv2d_get_output_shape(c, input_tensor, c->output_shape)) {
+ return AUBIO_FAIL;
+ }
+ }
+
+ // check we have as many filters as expected activation outputs
+ if (activations->shape[2] != c->n_filters) return AUBIO_FAIL;
+ if (activations->shape[2] != c->kernel->shape[3]) return AUBIO_FAIL;
+ if (input_tensor->shape[2] != c->kernel->shape[2]) return AUBIO_FAIL;
+
+ // check tensor activations has the expected sizes
+ if (c->output_shape[0] != activations->shape[0]) return AUBIO_FAIL;
+ if (c->output_shape[1] != activations->shape[1]) return AUBIO_FAIL;
+ if (c->output_shape[2] != activations->shape[2]) return AUBIO_FAIL;
+ return AUBIO_OK;
+}
+
+void aubio_conv2d_do(aubio_conv2d_t *c, aubio_tensor_t *input_tensor,
+ aubio_tensor_t *activations)
+{
+ uint_t i, j, k, l, a, b;
+ uint_t stride_a, stride_b;
+ sint_t x, y;
+ smpl_t s, w, bias, acc;
+ uint_t jj, ll, bb, yy;
+
+ uint_t k_stride1 = c->kernel->shape[3];
+ uint_t k_stride2 = c->kernel->shape[2] * k_stride1;
+
+ AUBIO_ASSERT(c && input_tensor && activations);
+ // check we have the correct output activation sizes
+ if (aubio_conv2d_check_output_shape(c, input_tensor, activations))
+ {
+ AUBIO_ERR("conv2d: check_output_shape failed\n");
+ return;
+ }
+
+ // for each kernel filter k
+ for (i = 0; i < activations->shape[2]; i++) {
+ // get bias
+ bias = c->bias->data[i];
+ stride_b = 0; // == j * c->stride_shape[1]
+ jj = 0; // == j * activations->shape[2]
+ // for each output y
+ for (j = 0; j < activations->shape[1]; j++) {
+ // for each output x
+ stride_a = 0; // k * c->stride_shape[0]
+ for (k = 0; k < activations->shape[0]; k++) {
+ // reset output
+ acc = 0;
+ // compute convolution for one kernel
+ for (a = 0; a < c->kernel_shape[0]; a++) {
+ x = stride_a + a - c->padding_start[0];
+ if ((x < 0) || (x > (sint_t)input_tensor->shape[0] - 1))
+ continue; // padding with 0.
+ bb = 0; // == b * k_stride2
+ for (b = 0; b < c->kernel_shape[1]; b++) {
+ y = stride_b + b - c->padding_start[1];
+ if ((y < 0) || (y > (sint_t)input_tensor->shape[1] - 1))
+ continue; // padding with 0.
+ yy = y * input_tensor->shape[2];
+ ll = bb + i; // + l * k_stride1
+ // for each input channel
+ for (l = 0; l < input_tensor->shape[2]; l++) {
+ // get kernel weight
+ w = c->kernel->data[a][ll];
+ // get input sample
+ s = input_tensor->data[x][yy + l];
+ acc += w * s;
+ ll += k_stride1;
+ }
+ bb += k_stride2;
+ }
+ }
+ stride_a += c->stride_shape[0];
+ // apply bias
+ acc += bias;
+ // compute RELU
+ activations->data[k][jj + i] = MAX(acc, 0);
+ }
+ stride_b += c->stride_shape[1];
+ jj += activations->shape[2];
+ }
+ }
+}
+
+void aubio_conv2d_do_backwards(aubio_conv2d_t *c,
+ /*aubio_tensor_t *old_gradients,*/
+ aubio_tensor_t *gradients)
+{
+ uint_t i, j, k, a, b;
+ AUBIO_ASSERT(c && gradients);
+ // TODO
+ // for each kernel filter k
+ for (i = 0; i < c->n_filters; i++) {
+ // for each input column
+ for (j = 0; j < gradients->shape[1]; j++) {
+ // for each input row
+ for (k = 0; k < gradients->shape[2]; k++) {
+ for (a = 0; a < c->kernel_shape[0]; a++) {
+ for (b = 0; b < c->kernel_shape[1]; b++) {
+#if 0
+ smpl_t grad = gradients->data[i]->data[a][b];
+ smpl_t oldgrad = old_gradients->data[i]->data[a][b];
+ smpl_t m = (grad - oldgrad * momentum);
+ w -= lr * m - lr * decay * w;
+#endif
+ }
+ }
+ }
+ }
+ }
+}
+
+uint_t aubio_conv2d_set_padding_mode(aubio_conv2d_t *c,
+ const char_t *padding_mode)
+{
+ AUBIO_ASSERT(c && padding_mode);
+ if (strncmp(padding_mode, "same", PATH_MAX) == 0) {
+ c->padding_mode = PAD_SAME;
+ } else if (strncmp(padding_mode, "valid", PATH_MAX) == 0) {
+ c->padding_mode = PAD_VALID;
+ } else {
+ return AUBIO_FAIL;
+ }
+ return AUBIO_OK;
+}
+
+uint_t aubio_conv2d_set_kernel(aubio_conv2d_t *c, aubio_tensor_t *kernel)
+{
+ uint_t i;
+ AUBIO_ASSERT(c && kernel);
+ for (i = 0; i < c->kernel->ndim; i++) {
+ AUBIO_ASSERT(c->kernel->shape[i] == kernel->shape[i]);
+ }
+ return AUBIO_OK;
+}
+
+aubio_tensor_t *aubio_conv2d_get_kernel(aubio_conv2d_t* c)
+{
+ AUBIO_ASSERT(c && c->kernel);
+ return c->kernel;
+}
+
+uint_t aubio_conv2d_set_bias(aubio_conv2d_t *c, fvec_t *bias)
+{
+ AUBIO_ASSERT(c && bias);
+ AUBIO_ASSERT(c->kernel_shape[1] == bias->length);
+ return AUBIO_OK;
+}
+
+fvec_t *aubio_conv2d_get_bias(aubio_conv2d_t* c)
+{
+ AUBIO_ASSERT(c && c->bias);
+ return c->bias;
+}
--- /dev/null
+/*
+ Copyright (C) 2018 Paul Brossier <piem@aubio.org>
+
+ This file is part of aubio.
+
+ aubio is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ aubio is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with aubio. If not, see <http://www.gnu.org/licenses/>.
+
+*/
+
+#ifndef AUBIO_CONV2D_H
+#define AUBIO_CONV2D_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct _aubio_conv2d_t aubio_conv2d_t;
+
+/** create a new conv2d layer */
+aubio_conv2d_t *new_aubio_conv2d(uint_t filters, uint_t *kernel_shape);
+
+/** perform forward 2D convolution */
+void aubio_conv2d_do(aubio_conv2d_t *t, aubio_tensor_t *input_tensor,
+ aubio_tensor_t *activations);
+
+/** TODO: implement */
+void aubio_conv2d_train(aubio_conv2d_t *t, aubio_tensor_t *input_tensor);
+
+/** set internal kernel weights */
+uint_t aubio_conv2d_set_kernel(aubio_conv2d_t *t, aubio_tensor_t *kernel);
+
+/** get conv2d weights */
+aubio_tensor_t *aubio_conv2d_get_kernel(aubio_conv2d_t *t);
+
+/** set internal biases */
+uint_t aubio_conv2d_set_bias(aubio_conv2d_t *t, fvec_t *bias);
+
+/** get conv2d biases */
+fvec_t *aubio_conv2d_get_bias(aubio_conv2d_t *t);
+
+/** set conv2d stride */
+uint_t aubio_conv2d_set_stride(aubio_conv2d_t *c,
+ uint_t stride1, uint_t stride2);
+
+uint_t *aubio_conv2d_get_stride(aubio_conv2d_t* t);
+
+uint_t aubio_conv2d_set_padding_mode(aubio_conv2d_t *c,
+ const char_t *padding_mode);
+
+uint_t aubio_conv2d_get_output_shape(aubio_conv2d_t *t,
+ aubio_tensor_t *input_tensor, uint_t *shape);
+
+void del_aubio_conv2d(aubio_conv2d_t *t);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* AUBIO_CONV2D_H */