remove src/sample.h
[aubio.git] / src / spectral / filterbank.c
1 /*
2    Copyright (C) 2007 Amaury Hazan <ahazan@iua.upf.edu>
3                   and Paul Brossier <piem@piem.org>
4
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 2 of the License, or
8    (at your option) any later version.
9
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14
15    You should have received a copy of the GNU General Public License
16    along with this program; if not, write to the Free Software
17    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18
19 */
20
21
22 #include "aubio_priv.h"
23 #include "fvec.h"
24 #include "cvec.h"
25 #include "spectral/filterbank.h"
26 #include "mathutils.h"
27
28 #define VERY_SMALL_NUMBER 2e-42
29
30 /** \brief A structure to store a set of n_filters filters of lenghts win_s */
31 struct aubio_filterbank_t_ {
32     uint_t win_s;
33     uint_t n_filters;
34     fvec_t **filters;
35 };
36
37 aubio_filterbank_t * new_aubio_filterbank(uint_t n_filters, uint_t win_s){
38   /** allocating space for filterbank object */
39   aubio_filterbank_t * fb = AUBIO_NEW(aubio_filterbank_t);
40   uint_t filter_cnt;
41   fb->win_s=win_s;
42   fb->n_filters=n_filters;
43
44   /** allocating filter tables */
45   fb->filters=AUBIO_ARRAY(fvec_t*,n_filters);
46   for (filter_cnt=0; filter_cnt<n_filters; filter_cnt++)
47     /* considering one-channel filters */
48     fb->filters[filter_cnt]=new_fvec(win_s, 1);
49
50   return fb;
51 }
52
53 /*
54 FB initialization based on Slaney's auditory toolbox
55 TODO:
56   *solve memory leak problems while
57   *solve quantization issues when constructing signal:
58     *bug for win_s=512
59     *corrections for win_s=1024 -> why even filters with smaller amplitude
60
61 */
62
63 aubio_filterbank_t * new_aubio_filterbank_mfcc(uint_t n_filters, uint_t win_s, uint_t samplerate, smpl_t freq_min, smpl_t freq_max){
64   
65   aubio_filterbank_t * fb = new_aubio_filterbank(n_filters, win_s);
66   
67   
68   //slaney params
69   smpl_t lowestFrequency = 133.3333;
70   smpl_t linearSpacing = 66.66666666;
71   smpl_t logSpacing = 1.0711703;
72
73   uint_t linearFilters = 13;
74   uint_t logFilters = 27;
75   uint_t allFilters = linearFilters + logFilters;
76   
77   //buffers for computing filter frequencies
78   fvec_t * freqs=new_fvec(allFilters+2 , 1);
79   
80   fvec_t * lower_freqs=new_fvec( allFilters, 1);
81   fvec_t * upper_freqs=new_fvec( allFilters, 1);
82   fvec_t * center_freqs=new_fvec( allFilters, 1);
83
84   fvec_t * triangle_heights=new_fvec( allFilters, 1);
85   //lookup table of each bin frequency in hz
86   fvec_t * fft_freqs=new_fvec(win_s, 1);
87
88   uint_t filter_cnt, bin_cnt;
89   
90   //first step: filling all the linear filter frequencies
91   for(filter_cnt=0; filter_cnt<linearFilters; filter_cnt++){
92     freqs->data[0][filter_cnt]=lowestFrequency+ filter_cnt*linearSpacing;
93   }
94   smpl_t lastlinearCF=freqs->data[0][filter_cnt-1];
95   
96   //second step: filling all the log filter frequencies
97   for(filter_cnt=0; filter_cnt<logFilters+2; filter_cnt++){
98     freqs->data[0][filter_cnt+linearFilters] = 
99       lastlinearCF*(pow(logSpacing,filter_cnt+1));
100   }
101
102   //Option 1. copying interesting values to lower_freqs, center_freqs and upper freqs arrays
103   //TODO: would be nicer to have a reference to freqs->data, anyway we do not care in this init step
104     
105   for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++){
106     lower_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt];
107     center_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt+1];
108     upper_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt+2];
109   }
110
111   //computing triangle heights so that each triangle has unit area
112   for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++){
113     triangle_heights->data[0][filter_cnt] = 2./(upper_freqs->data[0][filter_cnt] 
114       - lower_freqs->data[0][filter_cnt]);
115   }
116   
117   //AUBIO_DBG("filter tables frequencies\n");
118   //for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++)
119   //  AUBIO_DBG("filter n. %d %f %f %f %f\n",
120   //    filter_cnt, lower_freqs->data[0][filter_cnt], 
121   //    center_freqs->data[0][filter_cnt], upper_freqs->data[0][filter_cnt], 
122   //    triangle_heights->data[0][filter_cnt]);
123
124   //filling the fft_freqs lookup table, which assigns the frequency in hz to each bin
125   for(bin_cnt=0; bin_cnt<win_s; bin_cnt++){
126     fft_freqs->data[0][bin_cnt]= aubio_bintofreq(bin_cnt, samplerate, win_s);
127   }
128
129   //building each filter table
130   for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++){
131
132     //TODO:check special case : lower freq =0
133     //calculating rise increment in mag/Hz
134     smpl_t riseInc= triangle_heights->data[0][filter_cnt]/(center_freqs->data[0][filter_cnt]-lower_freqs->data[0][filter_cnt]);
135     
136     //zeroing begining of filter
137     for(bin_cnt=0; bin_cnt<win_s-1; bin_cnt++){
138       fb->filters[filter_cnt]->data[0][bin_cnt]=0.f;
139       if( fft_freqs->data[0][bin_cnt]  <= lower_freqs->data[0][filter_cnt] &&
140           fft_freqs->data[0][bin_cnt+1] > lower_freqs->data[0][filter_cnt]) {
141         break;
142       }
143     }
144     bin_cnt++;
145     
146     //positive slope
147     for(; bin_cnt<win_s-1; bin_cnt++){
148       fb->filters[filter_cnt]->data[0][bin_cnt]=(fft_freqs->data[0][bin_cnt]-lower_freqs->data[0][filter_cnt])*riseInc;
149       //if(fft_freqs->data[0][bin_cnt]<= center_freqs->data[0][filter_cnt] && fft_freqs->data[0][bin_cnt+1]> center_freqs->data[0][filter_cnt])
150       if(fft_freqs->data[0][bin_cnt+1]> center_freqs->data[0][filter_cnt])
151         break;
152     }
153     //bin_cnt++;
154     
155     //negative slope
156     for(; bin_cnt<win_s-1; bin_cnt++){
157       
158       //checking whether last value is less than 0...
159       smpl_t val=triangle_heights->data[0][filter_cnt]-(fft_freqs->data[0][bin_cnt]-center_freqs->data[0][filter_cnt])*riseInc;
160       if(val>=0)
161         fb->filters[filter_cnt]->data[0][bin_cnt]=val;
162       else fb->filters[filter_cnt]->data[0][bin_cnt]=0.f;
163       
164       //if(fft_freqs->data[0][bin_cnt]<= upper_freqs->data[0][bin_cnt] && fft_freqs->data[0][bin_cnt+1]> upper_freqs->data[0][filter_cnt])
165       //TODO: CHECK whether bugfix correct
166       if(fft_freqs->data[0][bin_cnt+1]> upper_freqs->data[0][filter_cnt])
167         break;
168     }
169     //bin_cnt++;
170     
171     //zeroing tail
172     for(; bin_cnt<win_s; bin_cnt++)
173       fb->filters[filter_cnt]->data[0][bin_cnt]=0.f;
174
175   }
176   
177   
178   del_fvec(freqs);
179   del_fvec(lower_freqs);
180   del_fvec(upper_freqs);
181   del_fvec(center_freqs);
182
183   del_fvec(triangle_heights);
184   del_fvec(fft_freqs);
185
186   return fb;
187
188 }
189
190 void del_aubio_filterbank(aubio_filterbank_t * fb){
191   uint_t filter_cnt;
192   /** deleting filter tables first */
193   for (filter_cnt=0; filter_cnt<fb->n_filters; filter_cnt++)
194     del_fvec(fb->filters[filter_cnt]);
195   AUBIO_FREE(fb->filters);
196   AUBIO_FREE(fb);
197 }
198
199 void aubio_filterbank_do(aubio_filterbank_t * f, cvec_t * in, fvec_t *out) {
200   uint_t n, filter_cnt;
201   for(filter_cnt = 0; (filter_cnt < f->n_filters)
202     && (filter_cnt < out->length); filter_cnt++){
203       out->data[0][filter_cnt] = 0.f;
204       for(n = 0; n < in->length; n++){
205           out->data[0][filter_cnt] += in->norm[0][n] 
206             * f->filters[filter_cnt]->data[0][n];
207       }
208       out->data[0][filter_cnt] =
209         LOG(out->data[0][filter_cnt] < VERY_SMALL_NUMBER ? 
210             VERY_SMALL_NUMBER : out->data[0][filter_cnt]);
211   }
212
213   return;
214 }
215
216 fvec_t * aubio_filterbank_getchannel(aubio_filterbank_t * f, uint_t channel) {
217   if ( (channel < f->n_filters) ) { return f->filters[channel]; }
218   else { return NULL; }
219 }