[filterbank] move statement after declaration
[aubio.git] / src / spectral / filterbank_mel.c
index 55d9ef1..7149de1 100644 (file)
   Copyright (C) 2007-2009 Paul Brossier <piem@aubio.org>
                       and Amaury Hazan <ahazan@iua.upf.edu>
 
-  This file is part of Aubio.
+  This file is part of aubio.
 
-  Aubio is free software: you can redistribute it and/or modify
+  aubio is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.
 
-  Aubio is distributed in the hope that it will be useful,
+  aubio is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
 
   You should have received a copy of the GNU General Public License
-  along with Aubio.  If not, see <http://www.gnu.org/licenses/>.
+  along with aubio.  If not, see <http://www.gnu.org/licenses/>.
 
 */
 
 #include "aubio_priv.h"
+#include "fmat.h"
 #include "fvec.h"
 #include "cvec.h"
 #include "spectral/filterbank.h"
+#include "spectral/filterbank_mel.h"
 #include "mathutils.h"
 
-void aubio_filterbank_set_mel_coeffs(aubio_filterbank_t *fb, uint_t samplerate, smpl_t freq_min, smpl_t freq_max){
+uint_t
+aubio_filterbank_set_triangle_bands (aubio_filterbank_t * fb,
+    const fvec_t * freqs, smpl_t samplerate)
+{
 
-  fvec_t *filters = aubio_filterbank_get_coeffs(fb);
-  uint_t n_filters = filters->channels, win_s = filters->length;
-  
-  //slaney params
-  smpl_t lowestFrequency = 133.3333;
-  smpl_t linearSpacing = 66.66666666;
-  smpl_t logSpacing = 1.0711703;
+  fmat_t *filters = aubio_filterbank_get_coeffs (fb);
+  uint_t n_filters = filters->height, win_s = filters->length;
+  fvec_t *lower_freqs, *upper_freqs, *center_freqs;
+  fvec_t *triangle_heights, *fft_freqs;
 
-  uint_t linearFilters = 13;
-  uint_t logFilters = 27;
-  uint_t allFilters = linearFilters + logFilters;
-  
-  //buffers for computing filter frequencies
-  fvec_t * freqs=new_fvec(allFilters+2 , 1);
-  
-  fvec_t * lower_freqs=new_fvec( allFilters, 1);
-  fvec_t * upper_freqs=new_fvec( allFilters, 1);
-  fvec_t * center_freqs=new_fvec( allFilters, 1);
-
-  fvec_t * triangle_heights=new_fvec( allFilters, 1);
-  //lookup table of each bin frequency in hz
-  fvec_t * fft_freqs=new_fvec(win_s, 1);
-
-  uint_t filter_cnt, bin_cnt;
-  
-  //first step: filling all the linear filter frequencies
-  for(filter_cnt=0; filter_cnt<linearFilters; filter_cnt++){
-    freqs->data[0][filter_cnt]=lowestFrequency+ filter_cnt*linearSpacing;
-  }
-  smpl_t lastlinearCF=freqs->data[0][filter_cnt-1];
-  
-  //second step: filling all the log filter frequencies
-  for(filter_cnt=0; filter_cnt<logFilters+2; filter_cnt++){
-    freqs->data[0][filter_cnt+linearFilters] = 
-      lastlinearCF*(pow(logSpacing,filter_cnt+1));
-  }
-
-  //Option 1. copying interesting values to lower_freqs, center_freqs and upper freqs arrays
-  //TODO: would be nicer to have a reference to freqs->data, anyway we do not care in this init step
-    
-  for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++){
-    lower_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt];
-    center_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt+1];
-    upper_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt+2];
-  }
-
-  //computing triangle heights so that each triangle has unit area
-  for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++){
-    triangle_heights->data[0][filter_cnt] = 2./(upper_freqs->data[0][filter_cnt] 
-      - lower_freqs->data[0][filter_cnt]);
-  }
-  
-  //AUBIO_DBG("filter tables frequencies\n");
-  //for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++)
-  //  AUBIO_DBG("filter n. %d %f %f %f %f\n",
-  //    filter_cnt, lower_freqs->data[0][filter_cnt], 
-  //    center_freqs->data[0][filter_cnt], upper_freqs->data[0][filter_cnt], 
-  //    triangle_heights->data[0][filter_cnt]);
-
-  //filling the fft_freqs lookup table, which assigns the frequency in hz to each bin
-  for(bin_cnt=0; bin_cnt<win_s; bin_cnt++){
-    fft_freqs->data[0][bin_cnt]= aubio_bintofreq(bin_cnt, samplerate, win_s);
-  }
-
-  //building each filter table
-  for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++){
-
-    //TODO:check special case : lower freq =0
-    //calculating rise increment in mag/Hz
-    smpl_t riseInc= triangle_heights->data[0][filter_cnt]/(center_freqs->data[0][filter_cnt]-lower_freqs->data[0][filter_cnt]);
-    
-    //zeroing begining of filter
-    for(bin_cnt=0; bin_cnt<win_s-1; bin_cnt++){
-      filters->data[filter_cnt][bin_cnt]=0.0;
-      if( fft_freqs->data[0][bin_cnt]  <= lower_freqs->data[0][filter_cnt] &&
-          fft_freqs->data[0][bin_cnt+1] > lower_freqs->data[0][filter_cnt]) {
+  uint_t fn;                    /* filter counter */
+  uint_t bin;                   /* bin counter */
+
+  smpl_t riseInc, downInc;
+
+  /* freqs define the bands of triangular overlapping windows.
+     throw a warning if filterbank object fb is too short. */
+  if (freqs->length - 2 > n_filters) {
+    AUBIO_WRN ("not enough filters, %d allocated but %d requested\n",
+        n_filters, freqs->length - 2);
+  }
+
+  if (freqs->length - 2 < n_filters) {
+    AUBIO_WRN ("too many filters, %d allocated but %d requested\n",
+        n_filters, freqs->length - 2);
+  }
+
+  for (fn = 0; fn < freqs->length; fn++) {
+    if (freqs->data[fn] < 0) {
+      AUBIO_ERR("filterbank_mel: freqs must contain only positive values.\n");
+      return AUBIO_FAIL;
+    } else if (freqs->data[fn] > samplerate / 2) {
+      AUBIO_WRN("filterbank_mel: freqs should contain only "
+          "values < samplerate / 2.\n");
+    } else if (fn > 0 && freqs->data[fn] < freqs->data[fn-1]) {
+      AUBIO_ERR("filterbank_mel: freqs should be a list of frequencies "
+          "sorted from low to high, but freq[%d] < freq[%d-1]\n", fn, fn);
+      return AUBIO_FAIL;
+    } else if (fn > 0 && freqs->data[fn] == freqs->data[fn-1]) {
+      AUBIO_WRN("filterbank_mel: set_triangle_bands received a list "
+          "with twice the frequency %f\n", freqs->data[fn]);
+    }
+  }
+
+  /* convenience reference to lower/center/upper frequency for each triangle */
+  lower_freqs = new_fvec (n_filters);
+  upper_freqs = new_fvec (n_filters);
+  center_freqs = new_fvec (n_filters);
+
+  /* height of each triangle */
+  triangle_heights = new_fvec (n_filters);
+
+  /* lookup table of each bin frequency in hz */
+  fft_freqs = new_fvec (win_s);
+
+  /* fill up the lower/center/upper */
+  for (fn = 0; fn < n_filters; fn++) {
+    lower_freqs->data[fn] = freqs->data[fn];
+    center_freqs->data[fn] = freqs->data[fn + 1];
+    upper_freqs->data[fn] = freqs->data[fn + 2];
+  }
+
+  /* compute triangle heights so that each triangle has unit area */
+  if (aubio_filterbank_get_norm(fb)) {
+    for (fn = 0; fn < n_filters; fn++) {
+      triangle_heights->data[fn] =
+          2. / (upper_freqs->data[fn] - lower_freqs->data[fn]);
+    }
+  } else {
+    fvec_ones (triangle_heights);
+  }
+
+  /* fill fft_freqs lookup table, which assigns the frequency in hz to each bin */
+  for (bin = 0; bin < win_s; bin++) {
+    fft_freqs->data[bin] =
+        aubio_bintofreq (bin, samplerate, (win_s - 1) * 2);
+  }
+
+  /* zeroing of all filters */
+  fmat_zeros (filters);
+
+  /* building each filter table */
+  for (fn = 0; fn < n_filters; fn++) {
+
+    /* skip first elements */
+    for (bin = 0; bin < win_s - 1; bin++) {
+      if (fft_freqs->data[bin] <= lower_freqs->data[fn] &&
+          fft_freqs->data[bin + 1] > lower_freqs->data[fn]) {
+        bin++;
         break;
       }
     }
-    bin_cnt++;
-    
-    //positive slope
-    for(; bin_cnt<win_s-1; bin_cnt++){
-      filters->data[filter_cnt][bin_cnt]=(fft_freqs->data[0][bin_cnt]-lower_freqs->data[0][filter_cnt])*riseInc;
-      //if(fft_freqs->data[0][bin_cnt]<= center_freqs->data[0][filter_cnt] && fft_freqs->data[0][bin_cnt+1]> center_freqs->data[0][filter_cnt])
-      if(fft_freqs->data[0][bin_cnt+1]> center_freqs->data[0][filter_cnt])
+
+    /* compute positive slope step size */
+    riseInc = triangle_heights->data[fn]
+      / (center_freqs->data[fn] - lower_freqs->data[fn]);
+
+    /* compute coefficients in positive slope */
+    for (; bin < win_s - 1; bin++) {
+      filters->data[fn][bin] =
+          (fft_freqs->data[bin] - lower_freqs->data[fn]) * riseInc;
+
+      if (fft_freqs->data[bin + 1] >= center_freqs->data[fn]) {
+        bin++;
         break;
+      }
     }
-    //bin_cnt++;
-    
-    //negative slope
-    for(; bin_cnt<win_s-1; bin_cnt++){
-      
-      //checking whether last value is less than 0...
-      smpl_t val=triangle_heights->data[0][filter_cnt]-(fft_freqs->data[0][bin_cnt]-center_freqs->data[0][filter_cnt])*riseInc;
-      if(val>=0)
-        filters->data[filter_cnt][bin_cnt]=val;
-      else filters->data[filter_cnt][bin_cnt]=0.0;
-      
-      //if(fft_freqs->data[0][bin_cnt]<= upper_freqs->data[0][bin_cnt] && fft_freqs->data[0][bin_cnt+1]> upper_freqs->data[0][filter_cnt])
-      //TODO: CHECK whether bugfix correct
-      if(fft_freqs->data[0][bin_cnt+1]> upper_freqs->data[0][filter_cnt])
+
+    /* compute negative slope step size */
+    downInc = triangle_heights->data[fn]
+      / (upper_freqs->data[fn] - center_freqs->data[fn]);
+
+    /* compute coefficents in negative slope */
+    for (; bin < win_s - 1; bin++) {
+      filters->data[fn][bin] +=
+          (upper_freqs->data[fn] - fft_freqs->data[bin]) * downInc;
+
+      if (filters->data[fn][bin] < 0.) {
+        filters->data[fn][bin] = 0.;
+      }
+
+      if (fft_freqs->data[bin + 1] >= upper_freqs->data[fn])
         break;
     }
-    //bin_cnt++;
-    
-    //zeroing tail
-    for(; bin_cnt<win_s; bin_cnt++)
-      filters->data[filter_cnt][bin_cnt]=0.f;
+    /* nothing else to do */
+
+  }
+
+  /* destroy temporarly allocated vectors */
+  del_fvec (lower_freqs);
+  del_fvec (upper_freqs);
+  del_fvec (center_freqs);
+
+  del_fvec (triangle_heights);
+  del_fvec (fft_freqs);
+
+  return AUBIO_OK;
+}
 
+uint_t
+aubio_filterbank_set_mel_coeffs_slaney (aubio_filterbank_t * fb,
+    smpl_t samplerate)
+{
+  uint_t retval;
+
+  /* Malcolm Slaney parameters */
+  smpl_t lowestFrequency = 133.3333;
+  smpl_t linearSpacing = 66.66666666;
+  smpl_t logSpacing = 1.0711703;
+
+  uint_t linearFilters = 13;
+  uint_t logFilters = 27;
+  uint_t n_filters = linearFilters + logFilters;
+
+  uint_t fn;                    /* filter counter */
+
+  smpl_t lastlinearCF;
+
+  /* buffers to compute filter frequencies */
+  fvec_t *freqs;
+
+  if (samplerate <= 0) {
+    AUBIO_ERR("filterbank: set_mel_coeffs_slaney samplerate should be > 0\n");
+    return AUBIO_FAIL;
   }
-  
-  /* destroy temporarly allocated vectors */  
-  del_fvec(freqs);
-  del_fvec(lower_freqs);
-  del_fvec(upper_freqs);
-  del_fvec(center_freqs);
 
-  del_fvec(triangle_heights);
-  del_fvec(fft_freqs);
+  freqs = new_fvec (n_filters + 2);
 
+  /* first step: fill all the linear filter frequencies */
+  for (fn = 0; fn < linearFilters; fn++) {
+    freqs->data[fn] = lowestFrequency + fn * linearSpacing;
+  }
+  lastlinearCF = freqs->data[fn - 1];
+
+  /* second step: fill all the log filter frequencies */
+  for (fn = 0; fn < logFilters + 2; fn++) {
+    freqs->data[fn + linearFilters] =
+        lastlinearCF * (POW (logSpacing, fn + 1));
+  }
+
+  /* now compute the actual coefficients */
+  retval = aubio_filterbank_set_triangle_bands (fb, freqs, samplerate);
+
+  /* destroy vector used to store frequency limits */
+  del_fvec (freqs);
+
+  return retval;
 }
 
+static uint_t aubio_filterbank_check_freqs (aubio_filterbank_t *fb UNUSED,
+    smpl_t samplerate, smpl_t *freq_min, smpl_t *freq_max)
+{
+  if (samplerate <= 0) {
+    AUBIO_ERR("filterbank: set_mel_coeffs samplerate should be > 0\n");
+    return AUBIO_FAIL;
+  }
+  if (*freq_max < 0) {
+    AUBIO_ERR("filterbank: set_mel_coeffs freq_max should be > 0\n");
+    return AUBIO_FAIL;
+  } else if (*freq_max == 0) {
+    *freq_max = samplerate / 2.;
+  }
+  if (*freq_min < 0) {
+    AUBIO_ERR("filterbank: set_mel_coeffs freq_min should be > 0\n");
+    return AUBIO_FAIL;
+  }
+  return AUBIO_OK;
+}
+
+uint_t
+aubio_filterbank_set_mel_coeffs (aubio_filterbank_t * fb, smpl_t samplerate,
+    smpl_t freq_min, smpl_t freq_max)
+{
+  uint_t m, retval;
+  smpl_t start = freq_min, end = freq_max, step;
+  fvec_t *freqs;
+  fmat_t *coeffs = aubio_filterbank_get_coeffs(fb);
+  uint_t n_bands = coeffs->height;
+
+  if (aubio_filterbank_check_freqs(fb, samplerate, &start, &end)) {
+    return AUBIO_FAIL;
+  }
+
+  start = aubio_hztomel(start);
+  end = aubio_hztomel(end);
+
+  freqs = new_fvec(n_bands + 2);
+  step = (end - start) / (n_bands + 1);
+
+  for (m = 0; m < n_bands + 2; m++)
+  {
+    freqs->data[m] = MIN(aubio_meltohz(start + step * m), samplerate/2.);
+  }
+
+  retval = aubio_filterbank_set_triangle_bands (fb, freqs, samplerate);
+
+  /* destroy vector used to store frequency limits */
+  del_fvec (freqs);
+  return retval;
+}
+
+uint_t
+aubio_filterbank_set_mel_coeffs_htk (aubio_filterbank_t * fb, smpl_t samplerate,
+    smpl_t freq_min, smpl_t freq_max)
+{
+  uint_t m, retval;
+  smpl_t start = freq_min, end = freq_max, step;
+  fvec_t *freqs;
+  fmat_t *coeffs = aubio_filterbank_get_coeffs(fb);
+  uint_t n_bands = coeffs->height;
+
+  if (aubio_filterbank_check_freqs(fb, samplerate, &start, &end)) {
+    return AUBIO_FAIL;
+  }
+
+  start = aubio_hztomel_htk(start);
+  end = aubio_hztomel_htk(end);
+
+  freqs = new_fvec (n_bands + 2);
+  step = (end - start) / (n_bands + 1);
+
+  for (m = 0; m < n_bands + 2; m++)
+  {
+    freqs->data[m] = MIN(aubio_meltohz_htk(start + step * m), samplerate/2.);
+  }
+
+  retval = aubio_filterbank_set_triangle_bands (fb, freqs, samplerate);
+
+  /* destroy vector used to store frequency limits */
+  del_fvec (freqs);
+  return retval;
+}